Modelling of ASCI High Performance Applications Using PACE

Junwei Cao, Darren J. Kerbyson, Efstathios Papaefstathiou, and Graham R. Nudd

High Performance Systems Laboratory
Department of Computer Science, University of Warwick, UK

http://www.dcs.warwick.ac.uk/~hpsg/
email: {junwei, djke}@dcs.warwick.ac.uk

the performance evaluation of parallel and distributed
Abstract computing systems are manifold, each having their own
motivation and methodology. The main research projects

There is a wide range of models being developed for theurrently in progress in this area include:

performance evaluation of parallel and distributed
systems. This has become an important area of research
especially with the development of dynamic processing
capabilities promised with Computational GRIDs [3]. A
performance modelling approach described in this paper
is based on a layered framework of the PACE
methodology. In this system, the model described by a
Performance Specification Language (PSL) provides the
capability for rapid calculation of relevant performance
information without sacrificing accuracy of predictions.
An example of the performance evaluation of an ASCI
kernel application, Sweep3D, is used to illustrate the
approach. The validation of the model is shown for a
cross-platform analysis on two parallel and distributed
architectures with different problem sizes. Results show
that a reasonable accuracy (approximately 10% error at
most) can be obtained with a rapid evaluation time
(typically less than 2s).

1 Introduction

Performance evaluation is an active area of interest ,
especially within the parallel and distributed systems
community where the principle aim is to demonstrate
substantially increased performance over traditional
sequential systems.

Computational GRIDs, composed of distributed and
often heterogeneous computing resources, are becoming
the platform-of-choice for many performance-challenged
applications [3]. Proof-of-concept implementations have
demonstrated that both GRIDs and clustered
environments have the potential to provide great
performance benefits to distributed applications. Thus, at
the present time, performance analysis, evaluation and

POEMS|[2]. The aim of this work is to create a
problem-solving environment for end-to-end
performance modelling of complex parallel and
distributed systems. This spans application
software, run-time and operating system software,
and hardware architecture. The project supports
evaluation of component functionality through the
use of analytical models and discrete-event
simulation at multiple levels of detail. The
analytical models include deterministic task graph
analysis, and LogP, LoPC models [4].

Parsec[1]. A parallel simulation environment for
complex systems, which includes a C-based
simulation language, a GUI (Pave), and a portable
run-time system that implements the simulation
operations.

AppLeS[14]. An application-level scheduler using
expected performance as an aid. Performance
predictions are generated from structural models,
consisting of components that represent the
performance activities (e.g. computation or
communication activities) of the application.
CHAOQSI16]. A part of this work is concerned with
the performance prediction of large scale data
intensive applications on large scale parallel
machines. It includes a simulation-based
framework to predict the performance of these
applications on existing and future parallel
machines.

RSIM [11]. This work consists of a simulation
approach whose key is that it supports a processor
model that aggressively exploits instruction-level
parallelism (ILP) and is more representative of
current and near-future processors.

scheduling are essential in order for applications to The motivation to develop a Performance Analysis
achieve h|gh performance in GRIDs environments. and Characterization Environment (PACE) in the work

The techniques and tools that are being developed foPresented here is to provide quantitative data concerning

010



the performance of sophisticated applications running orrepresentation of the whole system in terms of two
high performance systems [10]. The framework of modular components, namely a software execution

PACE is a methodology based on a layered approacimodel and a system model. However, for high
that separates out the software and hardware systemperformance computing systems, which involve
components through the use of a parallelisation templateconcurrency and parallelism, the model must be

This is a modular approach that leads to readily reusablenhanced. The layered framework is an extension of SPE
models, which can be interchanged for experimentalfor the characterisation of parallel and distributed
analysis. systems. It supports the development of three types of
Each of the modules in PACE can be described atmodels: software model, parallelisation model and
multiple levels of detail in a similar way to POEMS, system (hardware) model. It allows the separation of the
thus providing a range of result accuracies but at varyingsoftware and hardware model by the addition of the
costs in terms of prediction evaluation time. PACE is intermediate parallelisation model.
aimed to be used for pre-implementation analysis, such The framework and layers can be used to represent
as design or code porting activities as well as for on-the-entire systems, including: the application, parallelisation
fly use in scheduling systems in similar manner to that ofand hardware aspects, as illustrated in Figure 1.
AppLeS.

The core component of PACE is a Performance prplication Domain N
Specification Language (PSL) [12]. PSL provides the | Application Layer |
syntax and semantics to describe workloads for both i
sequential and parallel parts of an application. This | Subtask Layer |
includes control flow information, resource usage - J
information (e.g. number of operations), communication - v t N
structures and mapping information for a parallel or | Parallel Template Layer|
distributed system. - 1 5 /

In the work presented in this paper, the use of the r )
PACE system is described through an example | Hardware Layer |

| J

application kernel — Sweep3D [8]. Sweep3D is a part of
the ASCI application suite [9], which has been used to
evaluate advanced parallel architectures at Los Alamos
National Laboratories. The capabilities for performance
evaluation within PACE are illustrated through the
cross-platform use of Sweep3D on both an SGI
Origin2000 (a shared memory system), and a cluster of
SunUltral workstations.

The rest of the paper is organised as follows: Section

2 describes the performance modelling approach based |

on the PACE conceptual framework. Section 3 gives an
overview of the Sweep3D application and how it is
described within PSL. Section 4 illustrates the
performance predictions that can be produced by PACE
on the two systems considered. Preliminary conclusions
are discussed in Section 5.

2 PACE Performance Modelling Approach

The main concepts behind PACE include a layered
framework, and the use of associative objects as a basis
for representing system components. An initial
implementation of PACE supports performance

Figure 1. The Layered Framework

The functions of the layers are:

Application Layer— describes the application in
terms of a sequence of parallel kernels or subtasks.
It acts as the entry point to the performance study,
and includes an interface that can be used to
modify parameters of a performance study.
Application Subtask Layer— describes the
sequential part of every subtask within an
application that can be executed in parallel.

Parallel Template Layer describes the parallel
characteristics of subtasks in terms of expected
computation-communication interactions between
processors.

Hardware Layer— collects system specification
parameters, micro-benchmark results, statistical
models, analytical models, and heuristics to
characterise the communication and computation
abilities of a particular system.

According to the layered framework, a performance

modelling of parallel and distributed applications from model is built up from a number of separate objects.
object definition, through to model creation, and result Each object is of one of the following types: application,

generation. These factors are described further below.

of

2.1 Layered Framework

subtask, parallel template, and hardware. A key feature
the object
representation of computation,

organization is the independent
parallelisation, and

Many existing techniques, particularly for the analysis hardware. This is possible due to strict object interaction

of serial machines, use Software

Performancerules.

Engineering (SPE) methodologies [15], to provide a All objects have a similar structure, and a hierarchical
set of objects, representing the layers of the framework,

020



is built up into the complete performance model. An

example of a complete performance model, represented Application Model Scripts
by a Hierarchical Layered Framework Diagram (HLFD), Source Code Paraliel
is shown in Figure 6. Abstracted o 8
2.2 Model Creation Parallel —J\ J\ =
Part &5,
The creation of a software object in PACE system is —‘|/ —\/ D
achieved through the Application Characterization Tool =
(ACT). ACT aids the conversion of sequential or parallel o
source code into the PSL via the Stanford Intermediate Subtask %
Format (SUIF) [5]. ACT performs a static analysis of the I | —J\ v %
code to produce the control flow of the application, Serial _‘l/ _‘/ <
operation counts in terms of high-level language Part =

operations [13], and also the communication structure.
This process is illustrated in Figure 2.

Source
Code

SUIF SUIF
Front Eng™\ Format

Figure 4. Mapping Relations

The mapping relations are controlled by the PSL
compiler and the PACE evaluation engine, which will be
described further in the next section through the use of
L Laver ! the example application — Sweep3D.

=40 >

3 Sweep3D: An Example Application

1
L____L_a\zer____:

In this section we illustrate the PACE modelling
Figure 2. Model Creation Process with ACT capabilities for performance prediction of Sweep3D — a
complex benchmark for evaluating wavefront
In PACE a Hardware Model Configuration Language application techniques on high performance parallel and
(HMCL) allows users to create new hardware objects bydistributed architectures [8]. This benchmark is also
specifying system-dependent parameters. On evaluatiorbeing analysed by other performance prediction
the relevant sets of parameters are used, and supplied pproaches including POEMS [2]. This section contains
the evaluation methods for each of the componenta brief overview and the model description of this
models. An example is shown in Figure 3 illustrating the application. In Section 4 the model is validated with

main subdivision currently considered involving a results on two high performance systems.
distinction between computation, communication,

memory and /O models. Currently analytical models
have been developed for all of the components shown in The benchmark code Sweep3D represents the heart of

3.1 Overview of Sweep3D

Figure 3 [6]. a real Accelerated Strategic Computing #titie (ASCI)
application [9]. It solves a 1-group time-independent
4 Hardware Object \ discrete ordinates (Sn) 3D cartesian (XYZ) geometry

neutron transport problem. The XYZ geometry is

represented by a 3D rectangular grid of cells indexed as
IJK. The angular dependence is handled by discrete

Memor . ; :

[ Y [Cache L] |Cache LY | Ma|n| angles with a spherical harmonics treatment for the

[Network | Sockets | | MPI | PVM | ] scattering source. The solution involves two main steps:

\_

[cPU [Toie ] [Tfle ] [su] [

« the streaming operator is solved by sweeps for each

angle, and
Figure 3. Example Hardware Object « the scattering operator is solved iteratively.
2.3 Mapping Relations A sweep (Sn) proceeds as follows. For one of eight

given angles, each grid cell has 4 equations with 7

There are strict mapping relations between sourceunknowns (6 faces plus 1 central); boundary conditions

code of the application and its performance model.complete the system of equations. The solution is by a

Figure 4 illustrates the way in which independent objectsdirect ordered solve known as a sweep from one corner
are abstracted directly from the source code and built upf the data cube to the opposite corner. Three known
into a complete performance model which can be used tenflows allow the cell centre to be solved producing
produce performance prediction results. three outflows. Each cell's solution then provides inflows



to 3 adjoining cells (1 in each of the |, J, & K directions). model assweep3d and divide each iteration of the

This represents a wavefront evaluation in all 3 grid application into four subtasks according to their different
directions. For XYZ geometries, each octant of anglesfunctions and different parallelisations. The object
has a different sweep direction through the mesh, but alhierarchy is shown in Figure 6, each object is a separate

angles in a given octant sweep the same way.
Sweep3D exploits parallelism through the wavefront
process. The data cube undergoes a decomposition so
that a set of processors, indexed in a 2D array, hold part
of the data in the | and J dimensions, and all of the data
in the K dimension. The sweep processing consists of
pipelining the data flow from each cube vertex in turn to
its opposite vertex. It is possible for different sweeps to
be in operation at the same time but on different

rectangle and is labelled with the object name.
The functions of each object are:

» sweep3d- the entry of the whole performance

model. It initialises all parameters used in the
model and calls the subtasks iteratively according
to the convergence control parameteps) as
input by the user. Figure 7 describes different parts
of thesweep3dbiject clearly in PSL scripts.

processors.

lapplicaton sweep3d{ (*name?)
indude ~ hardware; (Fusingotherobiecs®)
indude  source;
indude  sweep;
incude  foeedt;
] incude  fl e,
] Var namenc. (Finiemel vaiahies )
K ’ e i=2
] npe j=3
— mk=10
] mmi=3,
-
sl 1 9=50,
K=50,
epsi=-12
ik { (*passing parameters
) . hardwere:  tootherobeds™®
Figure 5. Data Decomposition of the Sweep3D Cube Nproc=npe_i*npe j;
Source:
For example, Figure 5 depicts a wavefront (shaded in t:m
Grey) that originated from the unseen vertex in the cube, | sweep
and is about to finish at vertex A. At the same time, a | =t
further wavefront is starting at vertex B and will finish at |,
vertex C. Note that the example shows the use of a 5x5 opion” {™ "~ (evaluaiion configUrations )
grid of processors, and in this case each processor holdg _ fouse="SgOngn2000°
a total of 2x2x10 data elements (data set of 10x10x10). OC EXECTI TFOBRIGO0E™)
3.2 Model Description {;ﬁ':l;icegi:iﬂ){ |
We define the application object of the performance A sweep;
cal fixed,
— R @ e
Application 3d }
Object sweep
Subtask ‘/"/Y N\‘ Figure 7. Sweep3D Application Object
Object source| | sweep| | fixed | |flux_err
N 7 7 / source— subtask for getting the source moments,
Vs ~ which is actually a sequential process.
Parallel —— gIoE)aI gIoE)aI sweep— subtask for sweeper, which is the core
Template async | |pipeling um ax component of the application.
Object \ \ / /r fixed — subtask to compute the total flux fixup
S J number during each iteration.
(- ~ N ¥V g D flux_err — subtask to compute the maximum of
Hardware o .
Object SgiOrigin200d relative flux error.
Y ) async— a sequential “parallel” template.

Figure 6. Sweep3D Object Hierarchy
(HLFD Diagram)

pipeline— parallel template specially made for the
sweeper function.
globalsum- parallel template which represents the



parallel pattern for getting the sum value of a given
parameter from all the processors.

given parameter from all the processors.
contains all
Origin2000, which

SgiOrigin2000 —
configurations for SGI

The example model objects and their correspondence
with the C source code is shown in Figure 8. Figure 8A
globalmax— parallel template which represents the is the C source code of showing part of the main
parallel pattern for getting the maximum value of a function sweep, whose serial parts have been abstracted
into a number of sub-functions in bold font. Figure 8C
the hardware shows how the same source code structure is used to
is provide the parallel template description. Figure 8B is an
comprised of smaller component hardware modelsexample sub-function source code which can be
already in existence within PACE. This can be converted automatically to the control flow procedure in

interchanged with a hardware model of a different the subtask object as shown in Figure 8D.
system, e.g. a cluster of SUN workstations.

Sweep3D Source Code

Sweep3D Performance Model Scripts

pamp. ppeine{
vocisneepl{ poc eec i
sz\eqm): [P I o @l oty i)
ﬁ(qzirraacaw)( b(dﬁ:jrgu(ﬁsecaﬂwe=m1ﬂ}{
aonflev TX ¢
ot ded) sep quf ooty T get diedt}
fa(mo=L;mo<smmomo+){ fo(i=Li<=mmoji=i+1)f
ppeie iy sp qu ooty Tx ppene ik}
(k=L K=Kk Br=Lj<=kaj=+1)
K boop iy sep qu{ ooy TX K loop it}
fa(x=1x<=rpe ix=x+1)
flew ove0) fo(y=Ly<=npe jy=y+1x
nb=MP ReofPhior, my=Get mycxy);
MP DOUBLE icew 10 ew 1ov=Cet ew ofphesexy);
ew tag MPL COVM WORLD, ilew 1o/=0)
e N . sp neo{ by ew oymyidrio}
eke ew o) sp qu onmyd{ conider Tx ebe ew rov}
}
amp o) |/ sp quf ooy Tx @mp Fe}
! \ fo(x=1x<=rpe ix=x+1) J
(s 0/=0) N\ faty=Ly<=rpe fy=y+1) /!
1o=NP| Reorhianby myt=Get mydxy) /
MPYDOUBLE ckjns 104 s 10/=Get ns Iofphesexy) /
s tog MPL COMM WORLD, i(ns o/=0) !
= S \\\ sep mpeo{ ooty ms vy}
/ wmmng *p qu ami/ arb Txee sy
el s qu ke fiowok}
e II ~ ‘\ . ,’ 1
Mo } } f 4§
il i s Y , Tl o bf
}’/ / I/ \\\\\‘\:\\ \ } /’I Vll r’/
}’y' /,’ NN A } / g4
it =1 =
L i SRS
T gomesEl | |
I=D- ) F=-<.
#pegracgpLocprmi apue SGALTLLSU> 7 7>-- -
mi=ymi<smmimis bop mgmﬂlmw
m=mi+mig; e
#pegmacplLoprk bop (<BOSLFORA1f
Lkl V\ e SEOALAL
/| e
compue <sdaTHLSLL>
bop (B LFOR>H
armpue 9565 OVLL 2ARDA,ARDS,
mwm_mjm,m;
} g /
; e <IscIK;N_L>
} gh
} '
J¢Eddamp foe) 1
poc  dow wak{s}
poc dov st~
B y

Figure 8. Mapping between Sweep3D Model Objects and C Source Code




Some of the main statements used in the PSL tameasurements on the two systems considered.
represent the performance aspects of the source code areFigure 8 also shows the inner mapping between the
as follows: software objects and hardware object of the performance

. compute— a processing part of the application. its model. The abundant off-line configuration information
P P gp P ' “.included by the hardware object is the basis to

arguement is a resource usage vector. This vector is : . .
: implement a rapid evaluation time to produce the
evaluated through the hardware object. erformance oredictions

» loop — the body of which includes a list of the P P '
control flow statements that will be repeated.

 call - used to execute another procedure.

e case — the body of which includes a list of
expressions and corresponding control flow
statements which might be evaluated.

» step — corresponds to the use of one of the
hardware resources of the system. Its arguement i
used to configure the device specified in the
current step. This is used in parallel templates only. found in [10]

» confdev- configures a device. The meaning of its :

arguments depend on the device. For example, the F!gutreth9 shgws thg vaI|dat|on806fI tge. PAZSCIJEO mﬁdel d
device mpirecv (MPl receive communication against the code running on an ngin snare

opeatin) acpts thee rgurens source [T /e, ot e et or g processy
processor ID, destination processor ID and pu . ) : y sp
. configurations, which are not included to current
message size. . :
performance model for the sequential code. As shown in
It can be seen from the part of the Sweep3D modelthe figure, run time decreases when the number of
shown in Figure 8 that there is a lot of information processors increases. At the same time the parallel
extracted from the source code that is used for theefficiency decreases too. In fact when the number of
performance prediction. The accuracy of the resultingprocessors is more than 16, the run time does not
model is of importance, and in Section 4 below, detailedimprove any further.

4 Validation Results

In this section the preliminary validation results on
execution time for Sweep3D are given to illustrate the
accuracy of the PACE modelling capabilities for
gerformance evaluation. The procedures in the PACE
evaluation engine to achieve these results is complex and
out of the scope of this paper. Further details can be

results are shown to validate the model with
5 — 25 —
i\ grid size: 15x15x15 grid size: 25x25x245
20 A
Run Run
time time
3 +— Model 15 *— Model
(sec) \\ —l— Measured (sec) \\ —il— Measured
2 \I\.\-\.\ 10
) . 5 \-\i%q
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 02 0304 0506 07 08 09 10 11 12 13 14 15 16
Processors Processors
80 —
70 1o grid size: 35x35x35) R 250 !\ grid size: 50x50x50
un
Run 60 i\ timf0 \
EISI'];?:) 50 o Model (Sq_(go o—Model
40 —il— Measure —ill— Measureg
30 ‘\\ 100
i \\H\F 50
10 —¥
O 0 T T T T T T T T T T T T T T
02 03 04 0506 07 08 09 10 11 12 13 14 15 1 020304050607080910111213141516
Processors Processors

Figure 9. PACE Model Validation on SGI Origin2000

60



14 —
grid size: 15x15x11
12-4\
Run 10
time \ —&— Model
(sec) —il— Measured
6
4
2
02 03 04 05 06 07 08 09
Processors
160 grid size: 35x35x35
140-&
120
Run
time 100 —e— Model
(sec) 80 —l— Measure
60
o \-\._‘q.i
20
02 03 04 05 06 07 08 09
Processors

Figure 10. PACE Model Validation on

By only changing the hardware object to the
SunUltral predictions on this new system can be

60 grid size: 25x25x25
50-\
Run 40
time —&— Model
(sec) 30 —l— Measured
20
10
02 03 04 05 06 07 08 09
Processors
500 ———
450 1M grid size: 50x50x50
400
Run 350 \\
time 300 +—Model
(se) 5z \‘\ —#— Measure
200
150 \-\ék
100
50
02 03 04 05 06 07 08 09
Processors

Cluster of SunUIltralWorkstations

Table 2. Prediction Error on SunUltral

obtained as shown in Figure 10. A cluster of 9 SunUltral]

workstations was used to obtain the measurement

assuming no background loading. The run time spent i$

much more than that on SGI Origin2000 with the same

workload. But the trend of the curve is almost the same.

The accuracy of the prediction results were evaluate

Err.(%) | 15X15X15| 25X25X25| 35X35X35 50X50X5
5 1X2 -6.79 0.15 3.24 -1.12
P 2X2 7.07 8.07 5.62 5.30
2X3 4.00 1.64 -0.20 0.32
2X4 2.85 -1.49 -4.30 -10.06
3X3 5.01 3.42 2.27 0.82

as follows:

| Measuremet—Prediction|
x100%.

Error=
Measuremen

shown in Table 1, for the SGI Origin2000, and in Table

2 for the SunUltral Workstation Cluster. It can be seen
e

that the maximum error is 10% in both cases, but th
average error is approx. 5%.

Table 1. Prediction Error on SGI Origin2000
Err.(%) | 15X15X15 | 25X25%25| 35X35X35  50X50X5(
1X2 6.53 10.44 7.02 -5.02
2X2 0.45 4.60 9.37 9.80
2X3 1.38 -0.73 4.47 -2.46
2X4 5.66 0.82 1.12 -5.60
3X3 -0.29 -0.13 0.48 -4.55
3X4 -4.72 -4.92 -1.13 -7.62
4X4 -9.54 -4.90 -11.44 0.20

Besides the reasonable accuracy, the performance
model can be used to obtain the evaluation results in a
rapid time period, typically less than 2s. This is a key
feature of PACE that enables the performance models to

"Se used to aid to steer the application execution onto an

available system at run-time in an efficient manner [7].

5 Conclusions

This work has described a performance modelling
approach for parallel and distributed computing using
the PACE toolset. A case study of the Sweep3D
application has been given containing both model
descriptions and validation results. The main parts of the
system include:

» alayered framework,

» a Performance Specification Language (PSL),

* a semi-automated Application Characterization
Tool (ACT),

70



» a Hardware Model Configuration Language SUIF Compiler”,IEEE ComputerVol. 29(12), pp.
(HMCL), and 84-89, Decemberl996.

* strict mapping relations to get a performance [6] J.S. Harper, D.J. Kerbyson, G.R. Nudd, “Analytical
mggiil] ur?]lr:Ctlﬁ/caI{nginf;?;atfg:rce code with Modeling of Set-Associative Cache Behavior”, to
PP ' appear inEEE Transactions on Computek999.
. Thes.e lead to the key featu_re_s of PACE which [7] D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd,
mclude.. a  reasonable predlt.:tlon accuracy = — “Application Execution Steering Using On-the-fly
approximately 10% error at most; a rapid evaluation Performance Prediction”, inHigh Performance
time — typically less than 2s for a given system and Computing and Networkir;dﬁpr.inger—VerIag 1998
problem size; and easy performance comparison across ' ' '
different computational systems. It has been shown thaf8] K.R. Koch, R.S. Baker, and R.E. Alcouffe,
the PACE performance system can produce reliable  “Solution of the First-Order Form of the 3-D

performance information which may be used for Discrete Ordinates Equation on a Massively Parallel
investigating application and system performance in Processor”,Trans. of the Amer. Nuc. Spcvol.
many different ways. 65(108), 1992.

The PACE system is currently being extended to[ ]
provide support for performance prediction in
computational environments which may be dynamically
changing, and to aid the scheduling of multiple
applications on the available resources. This correspondfl0]G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C.
in part to the challenges currently posed by the Perry, J.S. Harper, and D.V. Wilcox, “PACE — A

D.A. Nowak, R.C. Christensen, “ASCI
Applications”, Report 232247, Lawrence Livermore
National Laboratory, American, November 1997.

development of Computational GRIDs. Toolset for the Performance Prediction of Parallel
and Distributed Systems”, to appear in High
Acknowledgement Performance Systems, Sage Science Press, 1999.

[11]V.S. Pai, P. Ranganathan, and S.V. Adve, “RSIM
Reference Manual. Version 1.0”, Department of
Electrical and Computer Engineering, Rice

This work is funded in part by DARPA contract
N66001-97-C-8530, awarded under the Performance

Technology Initiative administered by NOSC. University, Technical Report 9705, July 1997.

References [12]E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd, and
T.J. Atherton, “An Overview of the CHIP3S

[1] R. Bagrodia, R. Meyer, M. Takai, Y.A Chen, X. Performance Prediction Toolset for Parallel

Systems”, inProceedings 8 ISCA International

Zeng, J. Martin, and H.Y. Song, “Parsec: A Parallel O/ )
Conference on Parallel and Distributed Computing

Simulation Environment for Complex Systems”,

IEEE Computer Vol. 31(10), pp. 77-85, October SystemsOrlando, pp. 527-533, 1995.
1998. [13]B. Qin, H.A. Shall, and R.A. Ammar, “Micro Time
[2] E. Deelman, A. Dube, A. Hoisie, Y. Luo, R.L. Cost Analysis of Parallel ComputationsiEEE

Oliver, D. Sundaram-Stukel, H. Wasserman, V.S.  ransactions on Computergol. 40(5), pp613-628,
Adve, R. Bagrodia, J.C. Browne, E. Houstis, O. 1991.

Lubeck, J. Rice, P.J. Teller, and M.K. Vernon, [14]J.M. Schopf, “Structural Prediction Models for
“POEMS: End-to-end Performance Design of Large  High-Performance  Distributed  Applications”,

Parallel ~ Adaptive ~ Computational ~ Systems”, Proceedings of 1997 Cluster Computing Conference
Proceedings of the ACM'International Workshop (CCC '97) Atlanta, 1997.

on Software and Performanagap. 18-30, 1998. ) ) )
[15]C.U. Smith, “Performance Engineering of Software

[3] I. Foster, and C. Kesselman, “The GRID: Blueprint Systems”, Addison Wesley, 1990.
for a New Computing Infrastructure”, Morgan-

Kaufmann, July 1998. [1L6]M. Uysal, T.M. Kurc, A. Sussman, and J. Saltz, “A

Performance Prediction Framework for Data

[4] M.I. Frank, A. Agarwal, and M.K. Vernon, “LoPC: Intensive Applications on Large Scale Parallel
Modelling Contention in Parallel Algorithms”, Machines”, Proceedings of the "4 Workshop on
Proceedings of 8 ACM SIGPLAN Symposium on Languages, Compilers and Run-time Systems for
Principles and Practices of Parallel Programming Scalable Computers (LCR '98)998.

(PpoPP '97) Las Vegas, pp. 62-73, June 1997.

[5] M.W. Hall, .M. Anderson, S.P. Amarasinghe, B.R.
Murphy, S. Liao, E. Bugnion, and M.S. Lam,
“Maximizing Multiprocessor Performance with the

0 80



